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In this article we discuss a methodology that allows the direct numerical simula-
tion of incompressible viscous fluid flow past moving rigid bodies. The simulation
methods rest essentially on the combination of:

(a) Lagrange-multiplier-based fictitious domain methods which allow the fluid
flow computations to be done in a fixed flow region.

(b) Finite element approximations of the Navier—Stokes equations occurring
in the global model.

(c) Timediscretizations by operator splitting schemes in orderto treat optimally
the various operators present in the model.

The above methodology is particularly well suited to the direct numerical simulation
of particulate flow, such as the flow of mixtures of rigid solid particles and incom-
pressible viscous fluids, possibly non-Newtonian. We conclude this article with the
presentation of the results of various numerical experiments, including the simulation
of store separation for rigid airfoils and of sedimentation and fluidization phenomena
in two and three dimensions. © 2001 Academic Press
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1. INTRODUCTION

The main goal of this article is to discuss a methodology well suited to the direct nume
cal simulation of (possibly non-Newtonian) incompressible viscous flow past moving rig
bodieswhen the motion of the bodies is not known in advanderesults from the hydro-
dynamical coupling and external forces such as gravity and collisions (or near collisior
The methodology discussed here relies on several ingredients, the pivotal ones being:

o Afictitious domain method which allows the flow computation to be done on a fixe
space region which contains the moving rigid bodies.

e Lagrange multipliers defined on the regions occupied by the rigid bodies, to mat
over these regions the fluid flow and rigid body motion velocities.

o A simple but effcient strategy to take into account body/body and body/wall coll
sions (or near collisions).

o Finite element approximations taking advantage of a global variational formulati
(of the virtual power principle type) of the coupled flow—rigid body motion.

e Time discretizations by operator splitting in order to treat separately and (in prin
ple) optimally the various operators associated to the physics and numerics of the con
tational model.

In this article, the above methods will be applied to the direct numerical simulation
various incompressible Newtonian and non-Newtonian viscous flows past moving ri
bodies in two and three dimensions. These test problems will include the simulation
store separatiorfor rigid airfoils and of sedimentatiorand fluidization phenomena for
small and large10°) populations of particles.

An alternative approach to the methodology discussed in this article can be founc
Ref. [1], in the present issue of tleurnal of Computational Physicd is based on the
Arbitrary Lagrange—Eulemethodology with the flow computed, with a moving mesh or
a time-varying region (see [1] and the references therein for details).

The present article reviews (and improves) methods and results discussed in Refs. [2]-

2. MODELING OF THE FLUID-RIGID BODY INTERACTION

LetQ c RY (d = 2, 3) be a space region; we suppose fhi filled with anincompress-
ible viscous fluidbf densityp¢ and that it containg moving rigid bodiesB,, By, ..., B;
(see Fig. 2.1 for a particular case whdre- 2 andJ = 3). We denote by the unit normal
vector on the boundary @\ Uf:1 I§,— , pointing outward to the flow region. Assuming that
the only external force acting on the mixturagisvity, then, betweenollisions(assuming
that collisions take place), tHkiid flowis modeled by th&lavier—Stokes equations

au
{at + (- V)u} =pig+V-oin Q\U B; (D),

V-u=0in Q\ U B; (D), (2.1)

J
u(x, 0) = ug(X), Vx € sz\ U B;(0), with V - up =0,
j=1
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FIG. 2.1. An example of a two-dimensional flow region with three rigid bodies.

to be completed by

u=goonFWith/go~ndF=O (2.2)
r
and by the followingno-slip boundary conditioon the boundary B; of Bj,
_—

ux, t) = V() + wjt) x Gj(t)x, vx € 3B;(t), (2.3)
where, in (2.3)V; (resp.,w;) denotes therelocity of the center of mas3; (resp., the
angular velocity of the jth body, forj = 1, ..., J. In (2.1), thestress-tensos verifies

o=1—pl, (2.4)

typical situations forr being

T = 2vD(u) = v(Vu + Vu') (Newtonian casg (2.5)

7 is a nonlinear function oW u (non-Newtonian cage (2.6)

The motion of the rigid bodies is modeled by thewton—-Euleequations

av,

Mj—— = Mjg+Fj,
dt @.7)
dwj
ij + wj X |j(.dj ZTJ',
forj=1,...,J,wherein (2.7),
e M;j is themassof the jth rigid body,
e | is theinertia tensorof the jth rigid body,
¢ F; is the resultant of thiydrodynamical forceacting on thejth body, i.e.,
Fi = (-1 ond(dB)), (2.8)

3B,

e T is the torque aG; of the hydrodynamical forces acting on tfih body, i.e.,

E—
T =(-1 Gjx xond(¥B)), (2.9)
0B;
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e and we have

dG;
— =V,;. 2.10
dt ] ( )

Equations (2.7) to (2.10) have to be completed by the follovnitgal conditions

Bj(O)ZBoj, GJ(O)ZGOJ', Vj(O)ZVoj, wj(O):woj, Vj=1,...,J.

(2.11)
Remark 2.1. If B; is made of ehomogeneousiaterial ofdensityp;, we have
ligj  —lizj —li3j
Mj =,0]'/ dx, |j = _|12.j |22,j _|23,j , (2.12)
B.
: —lizj —l23j ls3j

where, in (2.12)dx = dx; dx dxz and

|11,j=Pj/ (x5 +x3) dx, '22,1201/ (X5 +x§) dx, '33,1':01/ (xf +x3) dx,

B Bj B;

|12.j=,01/ XX X, I3 =f0j/ XoXzdX,  l13j =Pj/ X1 X3 dX.
Bj Bj Bj

Remark 2.2. If the flow—rigid body motion is two-dimensional, or B; is a spherical
body made of iomogeneoumaterial, then the nonlinear texn) x |jw; vanishesin (2.7).

Remark 2.3. Suppose that the rigid bodies do not touch &t 0; then it has been shown
by B. Desjardins and M. Esteban (Ref. [9]) that the system of equations modeling the fl
of the above fluid—-rigid body mixture has a (weak) solution on the time interva])[0
t.(>0) depending on the initial conditions; uniqueness is an open problem.

3. AGLOBAL VARIATIONAL FORMULATION OF THE FLUID-SOLID
INTERACTION VIA THE VIRTUAL POWER PRINCIPLE

We suppose, in this section, that the fluidNiswtonianof viscosityv. Let us denote by
B(t) the space region occupied at titd®y the rigid bodies; we have thigt) = Ule B (1).
To obtain avariational formulationfor the system of equations described in Section 2, w
introduce the followindgunctional spacef compatible test functions

Wot) = {{v, Y, 8} |ve (H(Q\B®)Y, v=0onT,
Y=Y} 0=1{8} withY; eR% 6 R’ (3.1)
—_—

VX, t) =Y+ 6; x Gj(Hh)x onaBj(t), Vj=1...,J}.

In (3.1) we haved; = {0,0,6;} if d = 2.
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Applying thevirtual power principleto thewholemixture (i.e., to the fluidandthe rigid
bodies) yields thglobal variational formulation

pf/ {a_u +U- V)u} -vdx 4 2v/ D(u) : D(v) dx
2\Bm LIt 2B

J

J
—/7pV-vdX+ZM,~\'/,--Yj+Z(ij,-+wj x ljwj)-0; (3.2)
Q\B® = i

:pf/_g-vdx—i—ZM,—gYJ—, V{v,Y, 0} e Wy(t),
Q\BM® -

/ . gqV-u)dx=0, VvgeL%Q\B®), (3.3)
Q\B(1)
u(t) = go(t) onT, (3.4)

—
uxt) =Vt +wjt) xGjt)x, VxeaBjt),Vj=1....d,  (3.5)

dG;
—V; 3.6
to be completed by thimitial conditions
u(x, 0) = ug(x), vx € Q\B(0), 3.7)

Bj(0)=Boj, Gj0)=Ggj, V0=V, w;j0)=woj, vi=1...,J. (3.8

In relations (3.2) to (3.8):

e We have denoted functions suchxas> ¢(x, t) by ¢(t).
e We have used the following notation:

d
a-b=> ab. Va={ali.b={bi,.
k=1

d d
A:B=> > adbu, VA= (a)icki<d. B = (ba)rckia.
k=1 1=1

e Itis reasonable to assume thet) € (HY(Q2\B(1)))? andp(t) € L2(22\B(t)).
e We havew;(t) = {0,0, wj ()} if d = 2.

Formulations such as (3.2)—(3.8) (or closely related ones) have been used by several au
(see, e.g., [1], [10]-[12]) to simulate particulate flow @idbitrary Lagrange—EulefALE)
methods using moving meshes (actually, formulation (3.2)—(3.8) has been used in [9
prove the existence of a local in time weak solution to problem (2.1)-(2.5), (2.7), (2.11
Our goal in this article is to discuss an alternative basefictiious domain methodslso
calleddomain embeddingnethods). The main advantage of this new (in the context c
particulate flow) approach is the possibility of achieving the flow-related computations
a fixed space region, allowing thus the use of a fixed (finite difference or finite elemel
mesh, which is a significant simplification.
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4. ADISTRIBUTED LAGRANGE-MULTIPLIER-BASED FICTITIOUS
DOMAIN FORMULATION

In general terms our goal is to find a methodology in which

(a) afixed mesh can be used for flow computations,

(b) the rigid body positions are obtained from the solution of the Newton—Euler equ
tions of motion, and

(c) The time discretization is done by operator splitting methods in order to tre
individually the various operators occurring in the mathematical model.

To achieve such a goal we proceed as follows:

(i) We fill the rigid bodies with the surrounding fluid.
(i) We assume that the fluid inside each body has a rigid body motion.
(iii) We use (i) and (ii) to modify the variational formulation (3.2)—(3.8).
(iv) We force therigid body motion inside each moving body via a Lagrange multiplie
defined (distributed) over the body.
(v) We combine (iii) and (iv) to derive a variational formulation involving Lagrange
multipliers to force the rigid body motion inside the moving bodies.

We suppose (for simplicity) that each rigid bo8y is made of ehomogeneous material
of densitypj; then, taking into account the fact that any rigid body motion velocity freld
verifiesV - v = 0 andD(v) = 0, steps (i) to (iii) yield the following variant of formulation
(3.2)—(3.8):

Fora.et > 0, findu(t), p(t). {V;(t). Gj(t), wj(t)}7_;, such that

,Of/ [8—u+(u-V)u} -vdx—/ pV-vdx+2v/D(u):D(v)dx
Q ot Q Q

J
dv; dwij
+ ]Z:;(l—,of/ﬂj) |:de_tl Y+ (Ij—dtl +wj x ijj> -Hj] 4.2)

J
—pr [ @vaxE Y A pr/pIMig Yy VIV Y. 6) € Wbt
Q =t
/ qV-udx=0, Vge lL%Q), (4.2)
Q
u=goonT, (4.3)
_—
ux,t) = V() +wjt) x Gj(t)x, vx e Bj(t),vj=1,...,], (4.4)
dG;
W_VJ’ (4.5)
Bj(O): Boj, VJ(O)ZVOJ', wj(O):woj, Gj(O)ZGoj, vVi=1,...,J,

(4.6)

—

J
u(x, 0) = up(x), VX e SZ\ UBTJ and u(x,0) = Voj + woj x GojX,
=1

vx € Byj (4.7)
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with, in relation (4.1), spac@/(t) defined by

Wo(t) = {{v,Y,8} | v e (Hol(sz))d, Y ={Yj}j_1. 0 ={6;}]_1.with Y € RY,

_—

0 eR®  v(x,)=Y;+0; xGjOx inBjt), Vj=1...,3}.
Concerningu and p, it makes sense to assume thét) € (HX(Q))? andp(t) € L3(Q).

In order to relax theigid body motion constrain{4.4), we are going to employ a family
{A }le of Lagrange multipliersso thath; (t) € A;(t) with

Ajt) = (HY(B;m)Y, Vvji=1..., J. (4.8)
We obtain, thus, the followinfictitious domain formulation with Lagrange multipliers
Fora.et > 0, findu(t), p(t), {V;(t), Gj(t), wj(t), Aj(h)}]_;, such that

u(t) € (HY()?, u(t) = go(t) on T, p(t) € LZ(),

(4.9)
Vi) eRLGj() e R, wj(t) e R A1) e Ajt), Vj=1,...,J,
and
3
pf/ —u+(u~V)u} ~vdx—/ pV-vdx+2v/D(u):D(v)dx
o [ Ot Q Q
J N J av,
- ;o\j, V=Y —0j x Gjx)] +;(1—pf/pj)|v|jw.vj
] (4.10)
dw;i
+ (1_pf/pj)<|jdj+wjxljwj>'0j:pf/g'VdX
j=1 t @
J
+ 3 - pi/ppPMjg- Y], e (HE@), vY; e RY, Vo, e R,
j=1
/qV~udx=0, vq € L3(Q), (4.11)
Q
% i
(Hj, u®) = Vi) —wj®) x Gj(OX); =0, Vu; e Aj(),¥j=1....J, (4.12)
dG; .
— =V, VvVj=1...,, 4.13
dt j J ( )
Vi (0) = Vyj, Gj(0=Goj, wj0) = woj, Bj(0) =By, Vj=1,...,],
(4.14)
J L N _
u(x, 0) = ug(x), Ver\U Boj and u(x,0) = Vgj + woj x GojX, VX € By;.
1=t (4.15)

The two most natural choices 1, -); are defined by

(B, V)j = / (u -V + SI-ZV;L : Vv) dx, Y andv € Aj(t), (4.16)
B; (t)
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(V) =/Bm (n-v+8fD(w) :D(V))dx, Vuandve Ajt), (4.17)

with §; as acharacteristic length(the diameter ofB;, for example). Other choices are
possible, such as

(e, V) =/ p-vd(@Bj) +§; Vi : Vvdx, VY andv € Aj(t),
3B (t) B (t)

or
(e, V) :/ M'Vd(aBj)+(Sj/ D(u) : D(v) dx, VY andv e Aj(t).
aBj(t) Bj ()

Remark 4.1. The fictitious domain approach, described above, has clearly many sin
larities with theimmersed boundargpproach of C. Peskin (see Refs. [13]-[16]). However
the systematic use dfagrange multiplierseems to be new in this context. Another major
difference is the fact that in our approach the boundary of the moving rigid bodies does
play the fundamental role it plays in the Peskin’s approach.

Remark 4.2. An approach with some similarities to ours has been developed |
S. Schwarzeet al. (see Ref. [17]) in a finite difference framework. In the above refer
ence (dedicated to the simulation of particulate flow), the interaction between the ri
body and the fluid is forced viamenalty methodnstead of the multiplier technique used in
the present article; also, minor particle—particle penetration is allowed and no enforcen
of the rigid body motion inside the region occupied by the particle is done.

Remark 4.3. In order to force the rigid body motion inside the moving rigid bodies
we can use the fact thatdefined over? is a rigid body motion velocity field inside each
moving rigid body if and only iD(v) = 0in Bj(t),Vj =1,..., J;i.e,

/ D(v) : D(u)dx =0, YpeAjt),vi=1,...,J (4.18)
Bj (1)

A computational method based on this approach is discussed in [18].

Remark 4.4. Since, in (4.10)u is divergence freeand satisfies Dirichlet boundary
conditions o, we have

2/ D) : D(v) dx = / Vu:Vvdx, We (Hol(Q))d, (4.19)
Q Q

a substantial simplification indeed, fromcamputational point of viewwhich is another
plus for the fictitious domain approach used here.

Remark 4.5. Using high-energy physics terminology, the multipller can be viewed
as agluonwhose role is to force the rigidity insidB; by matching the velocity fields of
two continua. More precisely, the multiplieds are mathematical objects of teortar
type, very close to those useddomain decomposition methottsmatch local solutions
at interfaces or on overlapping regions (see Ref. [19]). Indeed {lie the present article
have genuine mortar properties since their role is to force a fluid to behave like a rigid sc
inside the space region occupied by the moving bodies.
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5. ON THE TREATMENT OF COLLISIONS

In the above sections, we have considered the motion of fluid/rigid body mixtures &
have given various mathematical models of this phenomenon, assuming that there we
rigid body/rigid body or boundary/rigid body collisions. Actually, with the mathematics
model that we have considered it is not known if collisions can take place in finite tin
(in fact several scientists strongly believe that lubrication forces prevent these collisi
in the case of viscous fluids). However, collisions take place in nature and also in act
numerical simulations if special precautions are not taken. In the particular case of ri
bodies moving in a viscous fluid, under the effect of gravity and hydrodynamical forces,
shall assume that the collisions taking placesarmothones in the sense that if two rigid
bodies collide (resp., if a rigid body hits the boundary), the rigid body velocities (resp., t
rigid body and boundary velocities) coincide at the points of contact. From the smooth nai
of these collisions the only precaution to be taken will be to avoid overlapping of the regic
occupied by the rigid bodies. To achieve this goal, we include in the right-hand sides
the Newton—Euler equation®.7) modeling the rigid body motionshort-range repulsive
force. If we consider the particular case of rigid bodigscular (in two-dimensions) or
spherical(in three-dimensions), and B andB; are two such rigid bodies, with radg,
andR; and centers of mags; andGj, we shall require the repulsion forég;, between
Bi andB; to satisfy the following properties:

—_
(i) to be parallel toG; Gj,

(i) to verify
|Fj1=0 ifd; >R+ Rj+p,
. (5.1)
|Fjl=gj/e ifdj =R +Ry,
. % - g
with di; = | GiG;j |, ¢ as ascaling factor ande as a ‘small’ positive numbgrand

(iii) | FT | has to behave as in Fig. 5.1 for

R+Rj<dj <R +Rj+p.

i i
Ri+R; Rj+Ri+p dij

FIG.5.1. Repulsion force behavior.
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Parametelp is therange of the repulsion force; for the simulations discussed in the
following sections, we have takem~ hg (hg is the space discretization stepsed for
approximating theelocity). Boundary/rigid body collisions can be treated in a similar way

Remark 5.1. For those readers wondering how to adjagtande, we would like to
make the following comments: clearly, the space discretization paramgteadjusted so
that the finite element approximation can resolve the boundary and shear layers occul
in the flow. Next, it is clear thab can be taken of the order bf,. The choice ot is more
subtle; suppose thé&; is defined by

di - R —R \?GiG
Fij=C;_1<( ij ; j P)) (Ijijj’ (5.2)

where, in (5.2), we have used the notation= max0, —&). Denoting, as usual, the di-
mension of quantity< by [X], ¢ will be a dimensionaif and only if ¢;; has the dimension
of aforce, i.e., §;] = MLT 2.

In order to linke and p, we are going to consider the simple model problem where
material point of massn is dropped from height = H, without initial velocity, above
a rigid obstacle located at= 0 and falls under the effect of gravity. Assuming that the
collision is treated as above Ipenaltyand a natural choice for the scaling parameter
beingmg, the motion of the point is described by

. Mg -2 _
{mz— —(z-p))?=-mg
£p (5.3)

z(0) = H, z(0)=0.

Along asz > p the equation of motion reducesze= —g, which implies that the material
point reacheg = p for the first timeatt = t,, with

t, = ,/y, (5.4)

the velocityz(t,) being given by

2(t,) = —v/29(H — p). (5.5)

Forz < p the differential equation in (5.3) can also be written as
2—%(2—,0)2—1—9:0. (5.6)
ep

Multiplying both sides of the differential equation (5.6) byand observing thatz/dt =
d(z — p)/dt, yields

dfi, 9 3
—|Z2 - = (z-pP+giz-p)| =0 5.7
qt | 22 3€p2(z p)°+9(zZ—p) (5.7)

It follows from (5.5) and (5.7) that as long ad&) < p, we have

1
S20? = —39 52 — p)° +9z(t) — p) = g(H — p). (5.8)
ep
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The material point reaches its minimal heightfor t,, such thaty,(t) = 0. It follows thus
from (5.8) thatz,, verifies

Zn—p — (Zm— )%/ (BepD) = H — p. (5.9)
Let us denote thenaximal penetration distange— z,, by §; we have then (from (5.9))
83/(3ep?) — 8 = H — p. (5.10)

We are going to use relation (5.10) to explore several scenarios:

(i) Suppose thaH = p; it follows then from (5.10) that

8 = +/3ep, (5.11)

which implies in turn that to havé/p <« 1 we need to take/s « 1, i.e.,§/p “small”
impliese “very small.” Typically,§/p ~ 10~2 impliese ~ 10~%.
(i) Suppose now thail > p. Since we wané/p « 1, it follows from (5.10) that

8%/(3ep?) ~ H,

8/p ~ (3e)3(H/p)">. (5.12)

Suppose that, for exampli,/p = 107 and that we want to taks p ~ 10~2; it follows then
from (5.11) that we need to take~ 1078, i.e.,8/p “small” implies ¢ “very very small.”

Returning to (5.2), let us say that scenario (ii) will be encountered (in some sense) if
fluid surrounding the rigid bodies isviscid, implying possible violent collisions. Scenario
(i) corresponds clearly to a soft collision singe~ hg, and we shall assume that it is the
kind of situation which prevails if the fluid is sufficiently viscous and the rafigos is not
too large, i.e.p;/pr of the order of 1¥j = 1,..., J. On the basis of these assumptions
we have always taken= h, for the calculations to be presented in Section 8.

Remark 5.2. In order to treat the collisions, we can use repulsion forces derived |
truncation of theLennard—Jonegotentials frommolecular dynamicgsee, e.g., [20] for
these notions from molecular chemistry); this approach is commonly used by physi
chemists to treat collisions in solvents containing “large” particles (whose characteri:
sizes are a few micrometers at least).

Remark 5.3. Penalty methods, closely related to those discussed just above, have
(and stillare) used by mechanical engineers for the numerical treatment of contact proble
A fundamental reference on these topics is the book by Kikuchi and Oden (Ref. [21]; -
also the references therein). The above reference contains comparisons between r
obtained by application of the Hertz contact theory and results obtained by penalty meth
According to [21], penalty methods allow the solution of contact problems for which Her
theory is no longer valid.
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FIG. 6.1. Subdivision of a triangle of,.
6. FINITE ELEMENT APPROXIMATION

For simplicity, we assume thét ¢ R?(i.e.,d = 2) and is polygonal; we have therit) =
{0,0, w(t)} and@ = {0, 0, 8} with w(t) andé € R. Concerning thespace approximation
of problem (4.9)—(4.15) by finite element methoedve shall proceed as follows:

With h(=hg) as aspace discretization stepe introduce a finite element triangulation
Ty, of Qanda triangulatiorTyy, twice coarser (in practice we should constriigi first and
then7y by joining the midpoints of the edges B4, dividing thus each triangle 6fy, into
four similar subtriangles, as shown in Fig. 6.1).

We approximate theH(2))2, (H3(£2))?, andL?(R) by the finite dimensional spaces

Vh = {Vh | Vh € (COQ))2,  WnlrePLx P, VT €Tl (6.1)
Voh = {Vh | Vh € Vb, vh = 0o0NT}, (6.2)

and
L7 = {Gh | Oh € C%(Q). thl1 € Po, VT € Tan}, (6.3)

respectively; in (6.1)—(6.3)P; is the space of the polynomials in two variables of degre:
<1. LetBjx (t) be a polygonal domain inscribed By (t) and let7Z/ (t) be a finite element
triangulation ofBjy (1), like the one shown in Fig. 6.2, wheBj is a disk.

FIG. 6.2. Triangulation of a disk.
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A finite dimensional space approximating (t) is
Ajn® = {pn | py € (C°Bn )2 prlr € Pux PLYT e T/ ®}.  (6.4)

An alternative toA j, (t) defined by (6.4) is as follows: ldk; }i'\£1 be a set of points from
B; (t) which coverB; (t) (uniformly, for example); we define then

N;j
A]h(t) = {l'l’h | Hn = ZMS(X—Xl), Hi € RZ! Vi = 13 s N] }a (65)
i=1
where §(-) is the Dirac measure at = 0. Then, instead of the scalar product of
(H(Bjn(1)))?, we shall usd-, -)j, defined by

NJ

(n:Vh)jh = D i Va(X),  Ypuy € Aja(1), Vi € Vh. (6.6)

i=1
The approach based on (6.5) and (6.6) makes little sense for the continuous problem, |
is meaningful for the discrete problem; it amounts to forcing the rigid body moti& @

via acollocation methodA similar technique has been used to enforce Dirichlet boundal
conditions, by F. Bertrandt al. (Ref. [22]).

Remark 6.1. The bilinear form in (6.6) has definitely the flavor oflscrete LZ(BJ- (t))-
scalar product. Let us insist on the fact that takingt) = (L2(Pj (t)))2 and then

(1, V) :/ p-vdx, Ve andv e Aj(t)
Bj (t)

makes no sense for the continuous problem. On the other hand, it makes sense for the
element variants of (4.9)—(4.15), but do not expegil(t) to converge to ah ?-function as
h — 0 (it will converge to some element of the dual spade* (B; (t)))?)’ of (H1(B; (1)))2.

Using the above finite dimensional spaces leads to the following approximation of prt
lem (4.9)—(4.15):

Fort > O findun(t), pn(t), {Vj1), Gjn (D), w; (1), /\jh(t)}f:1 such that

Un(t) € Vi, pn(t) € L3, 6.7)
Vi) eR%  Gjh(t) e R%,  wjt) € R,Ajn(t) € Ajp(t), Vj=1,...,3,
and
pf/ {auh—}—(uWV)uh] -vdx—/ phV~vdx+2v/D(uh):D(v)dx
J J
dv; do;
+;(1_Pf/PJ)MjW'Yj+;(1_pf/,0j)|jwej
(6.8)

J —_—
_Z<>‘ih’ V—Yj —01' X Gth)jh =pf/9'VdX
i=1 ¢

J
+Z(1—pf/pj)Mjg-Yj, VVEVoh,VYJERZ,VQjGR,
=1
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/ qV -up(t)dx =0, VvqelL2, (6.9)
Q
Uph =QgonhOnT, (6.10)
% i
(Bjhs Un() = V() —wj) x Gjn(OX)jh =0,  VYuj, € Ajpt),Vj=1,..., 3,
(6.11)
djt"“zvj, Vi=1,...,3J (6.12)

Vi (0) = Vo, Gjh(0) = Gojh,  @j(0) = wyj, Bjn(0) = Bojn,
Vi=1,...,J, (6.13)
—_

J
Up(X,0) =Uon(X), V¥xe Q\ U Bojn, Un(X, 0) = Voj + woj x GojnX,
=1

VX € Bojh. (6.14)
In (6.10),90n is an approximation afjy belonging to
¥Vh = {zn | zn € (CO()?, 20 = Zn|r With Z € Vi)

and verifying [ gon - ndI" = 0.

Remark 6.2. Thediscrete pressura (6.7)—(6.14) is defined within to an additive con-
stant. In order to “fix” the pressure, we shall require it to verify

/ ph(t)dx =0, vt > 0,
Q

i.e., pn(t) € L3, with L3, defined by

L(z)h:{Qh|Qh€ Lﬁ,/qhdx=0}.
Q

Remark 6.3. From a practical point of view, the semidiscrete model (6.7)—(6.14) i
incomplete since we still have to include thigtual power associated to theollision
forces Assuming that the rigid bodies are circuldr-£ 2) or sphericald = 3), we shall
add to the right-hand side of Eq. (6.8) the term

J

SR Y (6.15)

=1

where the repulsion fordg| is defined as in Section 5. If the rigid bodies are noncircular o
nonspherical we shall have to take into account the virtual power associated to the tor
of the collision forces.

Remark 6.4. Concerning the definition of theaultiplier spaceA jx (t), several options
are possible:

(i) If B; isrotationally invariant(this will be the case for a circular or a spherical rigid
body) we defineA j, (t) from the triangulatiorﬂ'hJ (t) obtained from]’hJ (0) by translation.
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(i) If B; isnot rotationally invariantwe can define\ j, (t) from atriangulatiorﬂ;j )
rigidly attachedto B;.
(iii) We can also define\ j, (t) from the set of points

Tjn(t) = Y, (1) U B5, 1), (6.16)

where, in (6.16)2]?h (t) is the set of vertices of the velocity gri} which are contained in
B (t), and WhereEj’h (t) is a set of control points locateéxB; (t). This “hybrid” approach is
(relatively) easy to implement and is particularly well suited to those situations where
boundaryd B; has corners or edges.

Remark 6.5. Inrelation (6.8), we can replacefg D(up) : D(v) dx by [, Vup : Vvdx,
by taking Remark 4.4 into account.

Remark 6.6. Let hq (resp.,h;) be the mesh size associated to the velocity ni&gsh
(resp., to the rigid body mesH,); then a relation such as

hQ < thj < hj < ZhQ, (6.17)

with 0 < x; < 1, seems to be needed, from a theoretical point of view, in order to s:
isfy some kind ofstability conditionof the Brezzi-Babuskéype (for generalities on the
approximation of mixed variational problems, such as (4.9)—(4.15), involvagyange
multipliers see, for example, the publications by F. Brezzi and M. Fortin (Ref. [23]) and
E. Roberts and J. M. Thomas (Ref. [24])), actually, taking= h,, seems to work fine in
practice.

Remark 6.7. In order to avoid the solution at each time step of complicatadgulation
intersection problemsve advocate the use of

—

(Ajh, TTjv =Y — 0 x Gjn(H)X)jn (6.18)
(resp.,
(Bain. T UR(D) — V(1) — wj (1) x Gin (X)) (6.19)
in (6.8) (resp., (6.11)), instead of
{Ajh, V=Y — 8 x mhh (6.20)
(resp.,
-

(Kjh, Un(t) = V() —wjt) x Gjh(t)X)jn),

where, in (6.18) and (6.19)];: (C°(22))2— Ajn(t) is thepiecewise linear interpolation
operatorwhich to each functiomw belonging to(C°(£2))?2 associates the unique element of
Ajn(t) defined from the values taken layat the vertices of (t).
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Remark 6.8. In general, the function(t) has no more than theH *2(Q2))2-regularity.
This low regularity implies that we can not expect more tth®?) for the approximation
error||un(t) — u(t)|l(Lzq)2 andO(h¥/?) for the approximation erroun (t) — U(t)|nzq)?
(see Ref. [25]).

7. TIME DISCRETIZATION BY OPERATOR SPLITTING

7.1. Generalities

Following A. Chorin (Refs. [26]-[28]), most “modern” Navier—Stokes solvers are base
on operator splittingschemes (see, e.g., Refs. [29], [30]) in order to force the incompres
ibility condition via a Stokes solver or la?-projection method. This approach still applies
to the initial value problem (6.7)—(6.14), which contains four numerical difficulties to eac
of which can be associated a specific operator, namely,

(a) the incompressibility condition and the related unknown pressure,
(b) an advection—diffusion term,

(c) the rigid-body motion oB;(t) and the related multipliek; (t), and
(d) the collision terms.

The operators in (a) and (c) are essentipligjection operatorsFrom an abstract point of
view, problem (6.7)—(6.14) is a particular case of the class of initial value problems

d 4
d_‘: n IZ:; A ty="f @0 =g, (7.1)

where the operatoré; can bemultivalued Among the many operator-splitting methods
which can be employed to solve problem (7.1) we advocate (following, e.g., [31]) the ve
simple one below; it is onlfirst-order accuratebut its low-order accuracy is compensated
by good stability and robustness properties. Actually, this scheme can besatatel-order
accurate by symmetrizatidree, e.g., [32]—[34] for the application®fmmetrized splitting
schemeso the solution of the Navier—Stokes equations).

A fractional step schentela Marchuk—Yanenko.With At(>0) as atime discretization
step applying theMarchuk—Yanenko schertwthe initial value problem (7.1) leads to

0% = g0, (7.2)
and forn > 0, computep™*! from ¢" via

n+i/4 n+Gi—1)/4

¢ —¢

At

+ A ((pn+i/47 (n+ 1)At) — fin+1’ (73)

fori =1,2,3 4with 3", £ = i,

Remark 7.1. Recently, we have introduced a five-operator decomposition obtained
treating separatelgiffusionandadvection Some of the numerical results presented in this
article have been obtained with this new approach, which is briefly discussed in Section
(see Remark 7.2).
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7.2. Application of the Marchuk—Yanenko Scheme to the Solution
of Problem (6.7)—(6.14)

Applying scheme (7.2), (7.3) to problem (6.7)—(6.14), we obtain (after inclusion of
collision terms and dropping some of the subscripts

u® = uon, {V9 }J N {wo}J 1,{80}1 ., andG® = {GO}] _, are given (7.4)

Forn > 0, knowingu®, {V”}J v {w?}le, {B}‘}le, andG" = {G“}] _,» We compute
u™t/4 p"+1/4 yia the solution of

U4 _ o
pf/i'VdX—/ p"AV .vdx =0, Vv e Vg,
Q Q

At
/ qv . un+1/4 dx = 0’ vq c LZ, (75)
Q
LlnJrl/4 c Vha un+l/4 — ggﬁ-l onT, pn+1/4 c Lgh

Next, we comput@"+?/4 via the solution of

U274 _ /4
o1 / . ~vdx+v/ vu™t4: wvdx
Q At Q

+ 0t /(un+1/4 WU v dx = py / g-vdx, W e Vo, (7.6)
@ Q
un+2/4 € Vh, un+2/4 — gga-l onT,

and then, predict the position and the translation velocity of the center of mass as follo
forj=1,...,J:

TakeV"Jrz/40 = V! and G”Jrz/40 = GJ; then predict the new position and translation
velocity of B; viathe foIIowmg subcycllng (with the local time steyt /N) and predicting—
correcting technique:

Fork =1,..., N, compute

\"/?+2/4,k _ V?+2/4,k—1 + (At/N)g a7
+ (At/2N) (L — p/pj) "M I (GNH/AKT), |
GT+2/4|< _ Gn+2/4k 1y (At/aN) (VF ynH2/Ak V“+2/4k 1), (7.8)
VAR Z IS L (At/N)g
+(At/AN)(1 — ,of/,oj)*lM-_l(Fr' (G244 F (GM2/4k-1y),
G T2/4K = G 1 (At/aN) (V] T2/4K 4 vkl (7.10)

enddo; let

VI AN gt g2/AN, (7.11)
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J . .
Now, we computai™¥4, {X]*¥% v*¥% M9 via the solution of

unt+3/4 _ yn+2/4 J ?*3/4 _ V?+2/4
—_ .vdx + 1- M) —————— .Y
Pf/Q At ;( pi/pi)Mj At j
+ 1- 1) [t B— 7
_—
:Z}le <A?+3/4, V—Yj —0] X GT+2/4X>jh’ VVEVoh,YJ' ERZ, 91' GR,
U4 e Vi, unt®/4 = gt onT, )\T+3/4 € AT,TZ/A, VI e R2 M4 e R,

J J

——
n+3/4 n+3/4 n+3/4 n+2/4 n+2/4

Finally, takeVT“’O = V?+3/4 and G']-‘“'o = G?+2/4; then predict the final position and

translation velocity oB; as follows, forj =1, ..., J:
Fork =1,..., N, compute

VI = IR L (AL/2N) (L = pr/p)) TEMTIF (GMHEEY), (7.14)
GMHK = Gt (At/AN) (VK 4 vty (7.15)
VIR = VIR (ALANY (L= o1 /o) TIMTE(F (G + F (G, (7.16)
Gl = G (At/AN) (VIFHE v, (7.17)
enddo; let
Vi = iR gt = GIHEN, (7.18)
We complete the final step by setting

1 3/4 1 n+3/4J
uttt = g4, {wT+ }j=1 = {o| }j=1' (7.19)
As shown above, one of the main advantages of the operator-splitting methodolog
that it allows the use of time steps much smaller thario predict and correct the position
and velocity of the centers of mass. For our calculations we have fdkerl0 or 20 in
relations (7.7)—(7.10) and (7.14)—(7.17); thus the local time step used to moved the parti
is At/N.

7.3. On the Solution of Subproblems (7.5), (7.6)

and (7.12), (7.13): Further Remarks

Problems (7.5) and (7.12), (7.13) are finite dimensional linear problems with the struct

ty —
{Ax+By_b, (7.20)

Bx =c,

where, in (7.20), matrid is symmetri¢cactually, the matriXA associated to problem (7.5)
(resp., (7.12), (7.13)) isositive definitgresp. positive definitéf p; > p¢,Vj =1,...,J).
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Problems such as (7.20) are knowrsasldle-point systenend theiriterative solutionby
Uzawa/conjugate gradient algorithnisdiscussed, with many details, in, e.g., Refs. [35].
[36]. The solution of problems (7.5) and (7.12), (7.13) by the algorithms in [35] and [36]
discussed, again with many details, in Refs. [2], [3], [6], and [7]. The linear problem (7.
(of the advection—diffusiortype) can be solved by theast-squares/conjugate gradient
algorithmsdiscussed in, e.g., Chapter 7 of Ref. [37].

We are now going to use this section for additional comments.

Remark 7.2. We are going to complete Remark 7.1 by observing thatfuriaer split-
ting, we can replace thadvection—diffusiostep (7.6) by

d
/ e ~vdx+/ (U5 w)u - vdx =0,

q ot Q
Y e Vi, ae. on(nAt, (n+ 1)At), (7.21)

u(nAt) = u"t/s,
u(t) € Vi, ut) = git on '™t x (nAt, (n 4+ 1)At),

u™2/5 = u((n + 1 A?), (7.22)
UMH/5 _ 2/
ot / S -vdx+v/ VU35 wvdx = pg / g-vdx,
Q At Q Q (7.23)
YW € Von; U35 € W, /% = gitonT,

with

(a) u"*/5 obtained fromu™ via the “incompressibility” step (7.5),
(b) I = {x|xeT, gg'()-n(X < 0},
©) Vgt~ ={v|veVh v=0onTr"1y,

Problem (7.23) is aliscrete elliptic systermwhose iterative or direct solution is a quite
classical problem. On the other hand, solvingpliee advection probler{¥.21) is a more
delicate issue. Clearly, problem (7.21) can be solved hethod of characteristictee,
e.g., Refs. [29] and [38] and the references therein). An easy-to-implement alternative tc
method of characteristics is provided by thave-like equatiomethod briefly discussed
below (see [33] and [34] for more details):

Returning to (7.21), observe that this problem is the semidiscrete analogue of

ou .
T (U™ V)u = 0in Q x (NAt, (n+ 1)At),
u(nAt) = u"t1/s,

u =gt (=u5) on ™ x (nAt, (n+ 1)At).

(7.24)

It follows from (7.24) that, after translation and dilation on the time axis, each compone
of u is solution of a transport problem of the type

9 .
a_(f+V.V<p=0|n§2x(O,1),

©(0) = ¢o,
p=gonT'_ x (0,1),

(7.25)
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withT_ ={x|xel, VX)-n(X) <0} andV -V =0, (dV/dt) = 0 and (ag/at) = 0.
We can easily see that problem (7.25) is “equivalent” to the (formally) well-posed proble

2

ng—V-((v-V<p)V)=0inQ % (0, 1),
dp
¢ =gonT_ x (0, 1), V~n<?;f +V~V<p) =0on('\I"_) x (0, 1).

Solving thewave-like equatiolf7.26) by a classical finite element/time stepping method i
quite easy since wariational formulationof (7.26) is given by

9% dg
—vdx+ [ (V-Vo)(V-Vv)dx + V.n—vdl' =0, Yv € Wy,
Q ot2 Q M\ ot

0
0(0) = go. 5?@»=—V~V¢m

=gonl'_x (0,1,
. (7.27)
WI

Wo={v|veHYQ), v=00nT_}.

Of course when time stepping methods are used to solve subproblem (7.27), a CFL cond
has to be satisfied. This can be done easily by choosing as local timetgt@®pwith integer

Q sufficiently large. Solution methods for the Navier—Stokes equations, taking advantag
the “equivalence” between (7.25) and (7.26), (7.27) are discussed in [33], [34]; see also [
[40] (and Section 8.6) for further applications, including the simulatiorisifoelastic fluid
flowa la Oldroyd-B.

Remark 7.3. System (7.12), (7.13) is the discrete analogue of

un+3/4 _ un+2/4 J rj1+3/4 _ Vrj1+2/4
— - vdx 1— IMi 34— Ty
P /Q N + J;( p1/P)IM; N ,
J wr_1+3/4 _ o
+2 A= pi/ppl =)
=1 (7.28)
_—

J +3/4 +2/4 1 2
=2 (AT V=Y =0 x G W e (Hp(@)”,
Y € R% 6; € R; u™¥/4 ¢ (HY(Q))%,

u¥/4 = gi*lonT, )\?+3/4 € AT+2/4, VT+3/4 e R?, a)?+3/4 e R,

 —
UM VI M G ) =0, Ve AT (7.29)

<“J’ j j j

Actually, the analogy between (7.12), (7.13) and (7.28), (7.29) is formal due to the lack
(H(Q))?-ellipticity of the bilinear functionalv, w} — [, v-wdx occurring in the left-

hand side of (7.28), implying that problem (7.28), (7.29) has no solution, in general, unli
its discrete counterpart (7.12), (7.13). Suppose nevertheless that problem (7.28), (7
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has a solution. Taking € (D(2\ U7_; B **))2and{Y;, 6;} = (0,0}, ¥j = 1,..., J.in
(7.28) yields

untd/4 _ym24) Lydx =0, Vve ( < \ B”+2/4>>
fo o ) y

which |mpI|es in turn that
unt3/4 — " 2/4 on Q\ U Bn+2/4 (7.30)

above (see, e.g., [41] for details)
D(O) = {¢ | ¢ € C*(O), ¢ has a compact support @},

where( is an open connected set®f, d > 1.
We have then from (7.28), (7.29) and (7.30) tHat=1, ..., J,
_—
un+3/4|B?+2/4(X) — Vrj1+3/4 + wrj1+3/4 Gn+2/4x VX € Bn+2/4 (7.31)

—_—

Pr /‘"+2/4 (un+3/4 - un+2/4) . (Yj +0; x GT+2/4x)dx

(7.32)
+ (1 ,Of/pJ)M ( n+3/4 Vrj1+2/4) . Yj
+(@—pi/p1j (@] — M6, =0, ¥Y; eR? 4 eR.
Combining (7.31) with (7.32) yield¥,j = 1, ..., J,
Vit = 2 pf/pn—l[(l— pr/pV} 4 2L / y u”*“dx}, (7.33)
j B+
and
4 1Y 2/4
w';+3/ =2- pf/pj)_l[(l — pi/ppw] + I—’ » G x u”*z/“dx} (7.34)
i/’

The practical implementation of (7.33) and (7.34)—via numerical integration methods
is quite easy, and we observe that tieutrally buoyantase p; = pt) does not present
any particular difficulty. After obtalnlngV"+3/ 4 ”*3/ 4} j—1, we enforce the rigid body
motion inside the particle region by mterpolatlon However, one has to realizath#t
and{V*¥*, wI¥*)_; computed via (7.30), (7.31), (7.33), and (7.84) not solutionsf
system (7.12), (7.13), in general, particularly if control points Iocate&lB}J'h”/ “ are used
to enforce the rigid body motion. Moreover, numerical results show that the results obtai
from the solution of the system (7.12), (7.13) are of better qualities than those providec
(7.33), (7.34) (which is of course much cheaper and easier to implement).

Remark 7.4. There is nothing mysterious about relations (7.7)—(7.11) and (7.14)—(7.1
Relations (7.7)—(7.11) (resp., (7.14)—(7.18)) follow from the time discretizadifber, op-
erator splitting, of

dv;
A—pt/pj)Mj— ai =1 -pi/pp)Mjg+ (1/2F;,

dG,
— =Vj/2
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(resp.,

dVv;
(1—pf/p,-)de—t' = (1/2)F,
dG;

5 =Vi/2.

Thatis, the right-hand-side terf$ andV ; have been equally distributed “over” the second
and forth fractional steps; other decompositions are possible.

8. NUMERICAL EXPERIMENTS

8.1. Synopsis

In this section, we are going to apply the computational methods discussed in Sectio
to 7 to the numerical simulation of various two- and three-dimensional fluid/solid inte
action phenomena, including sedimentation and fluidization for particulate flow and st
separation. Schematically, these numerical experiments can be divided in two families:
first family concerns situations where the number of rigid bodies is small (from 1 to :
while the second family is concerned with fluid/solid interactions involving more thén 1
particles; actually, we will present results concerning the direct numerical simulation o
Rayleigh—Taylor instability for particulate flow, the number of particles being 6,400.

More numerical results obtained by the methods discussed in this article can be foun
Refs. [2-8].

8.2. Numerical Simulation of the Motion of a Ball Falling
in an Incompressible Viscous Fluid

8.2.1. Generalities and Motivation

In this section we consider the numerical simulation of tingtion of a ball falling in
an incompressible Newtonian viscous flbig the methods discussed in Sections 4 to 7
Among the reasons to consider the above test problem let us mention its simplicity wi
compared to some of the test problems to follow, and also the fact that it will give us t
possibility of validating our methods by comparing the computed terminal velocities wi
the measured ones reported in Ref. [42].

8.2.2. Description of the Test Problem

The phenomenon that we intend to simulate is the following: a rigid ball of diamet
d and densityps is located, at timé = 0, on the axis (assumed vertical, i.e., parallel to
the gravity vectorg) of an infinitely long circular cylinder of diameter 1. We suppose
that the cylinder is filled with a Newtonian incompressible viscous fluid of depsity 1
and viscosity; we suppose also that the ball and the fluid are at rest initially Q) =
0, w(0) = 0andu(0)(=up) = 0)andthati(t) = O, Vt > 0, onthe boundary ofthe cylinder.
Under the effect of gravity the ball is going to fall and slowed down by the fluid viscosit
will reach a constant falling velocity (the terminal velocity); this supposes that the Reynol
number is small enough so that the falling ball will stay close enough to the axis not
touch the wall of the cylinder. The related experiment is well documented in Ref. [42].
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TABLE 8.1
Comparison between Computed and Experimental
Terminal Velocities (ps = 1.02 andd = 0.2)

v U Uexp Relative error (%) Re
0.20 0.1354 0.1317 2.8 0.135
0.15 0.1762 0.1750 0.7 0.234
0.10 0.2567 0.2571 0.2 0.513
0.05 0.4844 0.4603 5.2 1.93
0.02 0.9480 0.9129 3.8 9.48
0.01 1.310 1411 7.1 26.2

8.2.3. A Short Description of the Computational Methodology

The initial computational domain{2(0) = (0, 1) x (0, 1) x (0, 2.5); then it moves with
the center of the ball (we shall c&li(t) the corresponding position at time The truncated
circular cylinder is contained (embedded) in the computational domain and we force
velocity field outside the cylinder to be zero by another distributed Lagrange multiplier.
approximate the velocity we divid@ (t) into elementary cubes of lengtly,, then divide
each elementary cube into six tetrahedra of hefighand base arelag,/2; the set of these
elementary tetrahedra will be the “triangulatiofy(t) used to approximate the velocity.
The pressure will be approximated using a twice coarser similar “triangulation.”

The resulting discrete problem has been solved using the techniques discussed in Sec
to 7 with hg = 1/64 andAt = 5 x 104, implying that the number of velocity (resp.,
pressure) grid points is of the order of 650,000 (resp. 82,000). To approximate the multip
spaceAp(t) we have used the “hybrid” approach defined by (6.16) in Remark 6.4, and
that space used, .);, defined by (6.6). Finally, the linear advection—diffusion problem:
(7.6) have been solved using the least-squares/conjugate gradient algorithms discuss
[34, Chap. 7] (see also [43]).

8.2.4. Description of the Numerical Results and Comparison with Experimental Data

The fall of the ball in the viscous fluid has been simulateddet 0.2, 0.3, 0.4, ps =
1.02,1.14, andv = 0.2, 0.15, 0.1, 0.05, 0.02, 0.01. Assuming that at = 0 the ball is lo-
cated atG(0) = {.5, .5, .5} we obtain the computed terminal velociti@d.) reported in
Tables 8.1 to 8.6; we have also reported in these tables the corresponding experim

TABLE 8.2
Comparison between Computed and Experimental Terminal
Velocities (ps = 1.02 andd = 0.3)

v Uc Uexp Relative error (%) Re
0.20 0.2144 0.2164 0.9 0.321
0.15 0.2794 0.2840 1.6 0.558
0.10 0.4072 0.4047 0.6 1.22
0.05 0.7599 0.7493 14 4.56
0.02 1.392 1.4359 3.0 20.85

0.01 1.831 2.107 131 54.9
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TABLE 8.3
Comparison between Computed and Experimental

v U Uexp Relative error (%) Re
0.20 0.2536 0.2487 2 0.507
0.15 0.3299 0.3362 1.9 0.88
0.10 0.4799 0.4977 3.6 1.92
0.05 0.8930 0.8600 3.8 7.14
0.02 1.625 1.695 4.2 325
0.01 2.098 2.422 134 84

TABLE 8.4

Comparison between Computed and Experimental

Terminal Velocities (ps = 1.14 andd = 0.2)

v U, Uexp Relative error (%) Re
0.20 0.9367 0.8707 7.6 0.937
0.15 1.203 1.102 9.2 1.60
0.10 1.672 1.552 7.7 3.34
0.05 2.617 2.489 5.1 10.5
0.02 3.812 4.334 12 38.1

TABLE 8.5

Comparison between Computed and Experimental

Terminal Velocities (ps = 1.14 andd = 0.3)

v U, Uexp Relative error (%) Re
0.20 1.478 1.401 55 2.22
0.15 1.888 1.786 5.7 3.78
0.10 2.574 2.426 6.1 7.71
0.05 3.823 3.972 3.7 22.9
0.02 5.216 6.283 17 78.3

TABLE 8.6

Comparison between Computed and Experimental

Terminal Velocities (ps = 1.14 andd = 0.4)

v Uc Uexp Relative error (%) Re
0.20 1.746 1.673 4.3 3.49
0.15 2.226 2.057 8.2 5.93
0.10 3.031 2.868 5.7 121
0.05 4.448 4.573 2.7 35.6
0.02 5.892 6.946 15.2 118
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terminal velocities Jeyp) (Obtained from [42]), the associated relative errors, and the co
responding Reynolds number (based on the formule-R&d/v).

Itis our opinion that the agreement between computed and experimental terminal vel
ties is quite good, particularly if one takes into consideration that the experimental termi
velocities taken from Ref. [42] are obtained, in fact, by multiplying the terminal velocitie
of a ball falling in an unbounded flow region (in practice a region very large compared
the size of the ball) by a wall correction factor. This explains the large number of dig
in the experimental data and suggests, also, that these data contain other errors than
due to measurement. Actually, the large discrepancies observed=d.01, ps = 1.02
andv = 0.02, ps = 1.14 are very likely caused by the fact that when the falling velocity
becomes sufficiently largesymmetry breakintakes place, and the ball “leaves” the axis
of the cylinder and falls along a spiraling trajectory. For more details about the test c
discussed in this section and further comparisons with experimental data see Ref. [44]

8.3. Numerical Simulation of the Sedimentation of a Circular Disk
8.3.1. Description of the Test Problem

The objective of this test problem is to simulate the fall of a rigid circular disk in
bounded cavity filled with an incompressible Newtonian viscous fluid. Simulating the
impact of the cylinder with the bottom boundary of the cavity is part of the computation
experiment.

8.3.2. On the Computational Methodology

The computational techniques used for the simulations are those discussed in Secti
to 7. To construct the triangulatiorig, used to approximate the velocity, we have first
divided the cavity2 into elementary squares of lendth and then each square into two
triangles as shown in Fig. 8.1.

We proceed similarly to construct the (twice coarser) pressure grid. The multiplier sp:
A(t) and the pairing., .) have been approximated as in Section 8.2.3. Concerning now t
treatment of the advection—diffusion two approaches have been implemented, namely

hg

FIG. 8.1. Division of an elementary square.
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global approach where advection and diffusion are treated at once as in Section 8.2.3
the approach advocated in Remark 7.2 where a wave-like equation method is used to
the advection after decoupling from diffusion via an additional fractional step in scher
(7.4)—(7.19) (see Remark 7.2 for details). Actually, we have used these two approache
order to cross-validate our computational methods.

8.3.3. On the Geometry, Initial and Boundary Conditions, and Other Parameters

The computational domain & = (0, 2) x (0, 6).
The diameter of the disk i@ = 0.25.
The centelG of the disk is located dtl, 4} at timet = 0.
The fluid and the disk are initially at rest, i.e(0)(=ug) = O, G(0) = w(0) = 0.
The fluid velocity is0, vVt > 0, on the boundary af.
The fluid density isof = 1.
The disk densitys is either 1.25 or 1.5.
The fluid viscosityv is either 0.1 or 0.01.
e The velocity mesh sizlg is either /192 or /256 or 1/384; the pressure mesh
size ishp = 2hg.
e The time discretization stept is either 103 or 7.5 x 10~% or 5 x 1074,
e The parametes used in the collision model is of the order of £0

From the above characteristics we can see that we have (approximately) 440,000, 786
and 177 x 10° (resp., 110,000, 196,000, and 442,000) vertices for the three velocity (res
pressure) triangulations used for the simulations.

8.3.4. Description of the Numerical Results

In Fig. 8.2 we have visualized the flow and the particle positian=a0.3 for ps = 1.25
and v = 0.1. The figures associated t@, = 1/192 At = 1072 are practically undis-
cernible of those obtained withg, = 1/256, At = 7.5 x 1074, andhg = 1/384, At =
5 x 1074, Similarly, the figures associated to the least-squares/conjugate gradient tr
ment of the advection—diffusion and those obtained from the wave-like equation treatm
of the advection are essentially identical. Further results and comparisons are show
Figs. 8.3 t0 8.5.

The above figures show that, in practice, the cylinder quickly reaches a uniform falli
velocity until it hits the bottom of the cavity. A careful examination of Fig. 8.3 show:
that a symmetry breaking of small amplitude is taking place with the disk moving slight
on the right, away from the vertical symmetry axis of the cavity. Figure 8.5 shows th
the rotational component of the kinetic energy is small compared to the translational c
The maximal computed disk Reynolds numbers are 17.207fee 1/192 At = 10~3and
17.31 forhg = 1/256, At = 7.5 x 1073,

The results obtained using the wave-like equation approach to treat advection (o
decoupled from diffusion) are very close to those which have been reported above.
evidence of this very good agreement is provided by Fig. 8.6 where we have comparec
kinetic energies obtained by both approaches.

Another evidence of the good agreement between both approaches is that the maxir
disk Reynolds numbers obtained via the wave-like equation method are 17.44 for
1/192 At =103and 17.51 fohg = 1/256, At = 7.5 x 1074, to be compared to 17.27
and 17.31.
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FIG. 8.2. Particle position and flow field visualization &&=0.3 (ps=1.25v=0.1, ho =1/256 At =
7.5x 1074).

From the good agreement between both approaches and since the wave-like equ
approach is computationally faster (see Section 8.3.5 for precise comparisons) and e
to implement, it has been selected as the method of choice for most of the two-dimensi
test problems which follow (its 3-D implementation is currently in progress). This applies
particular to the variant of the above test problem where, this tige, 1.5 andv = 0.01,
everything else remaining the same. From the increased density of the disk and red
viscosity of the fluid we can expect the disk motion to be much faster and the symme
breaking to be more pronounced than in the previous experiment. These predictions
confirmed by the results shown in Figs. 8.7-8.11.

With the exception of the rotational kinetic energy (for which we still have “qualitative
agreement) the computed results are in good quantitative agreement for the various v
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FIG. 8.3. Histories of thex-coordinate (left) and-coordinate (right) of the center of the disk foy=1.25
andv =0.1(hg = 1/192 andAt = 1073, solid linesh, = 1/256 andAt = 7.5 x 1074, dashed—dotted lines). Least-
squares/conjugate gradient treatment of advection—diffusion.
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lines). Least-squares/conjugate gradient treatment of advection—diffusion.
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5 x 107*; wave-like equation treatment of the advection).
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FIG. 8.8. Histories of thex-coordinate (left) and/-coordinate (right) of the center of the disk for=1.5
andv =0.01 (hg, =1/256 andAt = 7.5 x 1074, solid lines;hg = 1/384 andAt =5 x 104, dashed-dotted lines;
wave-like equation treatment of the advection).
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FIG. 8.9. Histories of thex-coordinate (left) and/-coordinate (right) of the translation velocity of the disk
for ps=1.5 andv =0.01(hg = 1/256 andAt = 7.5 x 1074, solid lines;hg = 1/384 andAt =5 x 1074, dashed—
dotted lines; wave-like equation treatment of the advection).
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FIG. 8.10. History of the angular velocity of the disk fqis=1.5 andv=0.01 (hgo =1/256 andAt =
7.5x 1074, solid line;hg = 1/384 andAt =5 x 104, dashed—dotted line; wave-like equation treatment of the
advection).
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FIG. 8.11. Histories of the translational (left) and rotational (right) kinetic energies of the dispferl.5
andv =0.01 (hg = 1/256 andAt =7.5 x 1074, solid lines;hg, = 1/384 andAt =5 x 1074, dashed—dotted lines;
wave-like equation treatment of the advection).

of hg and At. In particular, the maximum computed disk Reynolds numbers are 43¢
for hg = 1/192 andAt = 1073, 450.7 forhg = 1/256 andAt = 7.5 x 1074, and 466 for
he = 1/384 andAt =5 x 107%; this is quite good agreement if one considers that on
is dealing with a highly nonlinear phenomenon involving symmetry breaking. Actuall
the above figures show that the symmetry breaking weakehsaasl At decrease. This
is not surprising since the above symmetry breaking is triggered by the (non-symmet
perturbations associated to our numerical methods (our triangulations, for example,
not symmetric with respect to the cavity axis (i.e., the line= 3)); ash decreases the
quality of the approximation increases implying that the level of perturbation decreas
leading to symmetry breakings of smaller amplitude. Let us observe thhtfer 1/384
the velocity (resp., pressure) triangulation has approximat@y st 1° (resp., 442,000)
vertices, respectable numbers indeed.

8.3.5. Further Details on Implementation

Let us provide some further information concerning the computer implementation
the methods discussed in Sections 3 to 7, when applied to the test problem describe
Sections 8.3.1 and 8.3.3. Without going into excruciating detail, let us say that:

¢ We have takenranging from5x 107°t05 x 10~¢inthe collision model associated
to relation (5.2). The parametgrin (5.2) (the thickness of the safety zone) has been take
of the order of 2.5q.

e The number of conjugate gradient iterations necessary to force the discrete inc
pressibility is of the order of 12.

o If the least-squares/conjugate gradient methodology advocated in [37] and [43
used to treat the advection—diffusion it requires two (preconditioned) iterations at most

o If one uses the wave-like equation approach to treat the advection the numbe
sub-time steps used to integrate the wave-like equation (7.26) is of the order of five.

e The number of iterations necessary to force the rigidity inside the disk varies frc
70 to 100 (itincreases with the maximal Reynolds number). This may seem quite large,
things have to be put in perspective for the following reasons:

(i) The dimension of the discrete multiplier spasg is small compared to the

dimensions of the velocity spadg and pressure spaé®. We have indeed
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TABLE 8.7
CPU per Time Step (in Seconds)

Ps v h At Adv. treat.  CPU/timestep(s)
1.25 0.1 192 103 l.s./c.g. 29.7

1.25 0.1 Y192 10° w.-l. eq. 25.6

125 0.1 ¥256 75x10* l.s./c.g. 60.8

1.25 0.1 y256 75x 10* w.-l. eq. 60.6

15 102 1/192 10°  w.l eq. 31

15 102 1/256 75x10*  w.-l eq. 54.8

15 102 1/384 5x 10 w.-l. eq. 140.8

dimV;, >~ 880,000, dimP, ~ 110000 and dimAp >~ 3,700 ifh=1/192
dimVy >~ 1.57 x 1°, dimP, ~ 196000 and dinA, ~ 6,400 ifh = 1/256
dimVy >~ 3.54 x 1°, dimP, ~ 42,000, and dimA, =~ 14,600 ifh =1/384

(ii) The problems of type (7.20) encountered in this application have been solv
by a diagonally preconditioned conjugate gradient algorithm implying that each iterati
is quite inexpensive.

From the above reasons, most of the CPU time is spent in solving the Navier—Stokes e
tions. Of course for those situations with many particles, where the ratio solid volume/fll
volume is of order 1 it may be worthwhile to precondition the conjugate gradient algorith!
used to compute the multipliers, by the symmetric and positive definite matrices associc
to the scalar products (4.16) or (4.17) restrictedtq.

e The discrete Poisson problems encountered in computing the discrete pressure
forcing the discrete incompressibility condition “take place” on a regular grid; we ce
therefore uséast Poisson Solvefsased orcyclic reductionto solve these problems (see,
e.g., Ref. [45] for a discussion of cyclic reduction methods). Similarly, the elliptic problen
encountered when treating diffusion (with or without advection) can be solved by fast dir
solvers based on cyclic reduction.

e The wave-like equation-based methodology (w.-l. eq.) seems to be 20% faster t|
the one based on the least-squares/conjugate gradient treatment (l.s./c.g.) of advec
diffusion; it is also easier to implement.

e The computational times per time step on a one-processor DEC Alpha 500-au wc
station are given in Table 8.7 (where the notation is self-explanatory). These figures cal
substantially reduced via parallelization since the good potential for parallelization of t
fictitious domain methods has not been taken advantage of in these simulations (see,
ref. [46] for the parallelization of the fictitious domain methods discussed in this article)

8.4. Numerical Simulation of the Motion and Interaction of Two Circular Disks
Sedimenting in an Incompressible Newtonian Viscous Fluid

8.4.1. Description of the Test Problem

The objective of this test problem is to simulate the motion and the interaction of tv
identical rigid circular disks sedimenting in a vertical channel. The two disks are initially
rest on the axis of the channel, the distance between their centers being one disk dian
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We expect the simulations to reproduce the well documedting, kissing, and tumbling
phenomenon; this phenomenon has been observed in laboratory experiments and als
simulations based on computational methods different of the ones discussed in this ar
(see, for example, [47, 48], and the references therein).

The computational methods used for this test problem are those already employec
the test problems of Section 8.3.

8.4.2. On the Geometry, Initial and Boundary Conditions, and Other Parameters

e The computational domain at tinte= 0 is 2(0) = (0, 2) x (0, 6) and is moving
with the disks.
e The diameter of the disks &= 0.25.
The initial positions of the disk centers gtk 4.5} and{1, 5}.
The fluid and the disks are initially at rest.
The fluid velocity isO, YVt > 0, on the boundary of the channel.
The fluid density isr = 1.
The disk density ips = 1.5.
The fluid viscosity iss = 0.01.
e The discretization parameters dhg,, At} = {1/192 1073}, {1/256 7.5 x 107%},
{1/384,5 x 1074}.
e The collision parameter is= 5 x 107°.
e The safety zone thicknegsin the collision model ranges fromhg to 4hg,.

8.4.3. Description of the Numerical Results

The results shown below have been obtained using the wave-like equation approac
Section 7.3, Remark 7.2, to treat the advection.

The drafting, kissing, and tumbling phenomenon mentioned above is clearly observe
Fig. 8.12. The accepted explanation of this phenomenon is as follows:

The lower disk, when falling, creates a pressure drop in its wake. This implies thai
if initially close enough—the upper disk encounters less resistance from the fluid tf
the lower one and falls faster. Falling faster, the upper disk touches (or almost touct
the lower one. Once in contact (or quasi-contact), the two disks act as an elongated |
falling in an incompressible viscous fluid. As is well known, elongated bodies falling st
ficiently fast in a Newtonian incompressible viscous fluid have a tendency to rotate
that their broad sides become perpendicular to the flow direction. Indeed rotation ta
place, as seen is Fig. 8.12 tat= 0.2, but the two-disks assemblage is unstable and tt
two disks separate. The maximum computigzk Reynolds numbés 664 (resp., 680 and
689) for {hq, At} = {1/192 103} (resp.,{1/256 7.5 x 10~*} and {1/384, 5 x 10°4}).
The computedninimal distancebetween the two disks is.26hg, 1.03hg, and 21hg
for {hg, At} = {1/192 1078}, {1/256, 7.5 x 10~%} and {1/394 5 x 10%}; it occurs at
t =0.157, 0.161, and 0.163, respectively. Considering that drafting, kissing, and tu
bling is a violent phenomenon (see Fig. 8.14 for evidence of this violence) the agr
ment between the computed results for the various valudgs, dnd At is quite good.
Calculations done wittps = 1.25 confirm the above results; actually, the agreement |
even better since the disk motions and fluid flow are slower due to the smaller value

Ps — Pr-
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5 x 104). Wave-like equation treatment of the advection.

At=

1/384

The various observations and comments done in Section 8.3.3 (for the sedimentatio

the cc

and numbers of iterations associated to the solution of the various subproblems are ¢

one disk) still apply to the present test problem (see Figs. 8.13—-8.15). Actually.
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FIG. 8.13. Histories of thex-coordinate (left) and/-coordinate (right) of the centers of the disks far

5x 1074, dashed—dotted lines).

1/384, At=

1.5 andv =102 (h, =1/256, At =7.5 x 107%, solid lines;hq

Wave-like equation treatment of the advection.
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o 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 02 0.25

FIG. 8.14. Histories of thex-coordinate (left) and/-coordinate (right) of the translational velocity of the
disks for ps=1.5 andv =102 (hga=1/256, At=7.5x 1074, solid lines; andh, =1/384, At =5x 1074,
dashed-dotted lines). Wave-like equation treatment of the advection.

leads to higher Reynolds numbers for the same valuesg, gk, andv. For example, the
CPU times per time-step on the same DEC Alpha 500-au workstation are 44, 79, and 2
for {hg, At} = {1/192 1073}, {1/256, 7.5 x 1074}, and{1/384, 5 x 104}, respectively
(compared to 31, 55, and 141 s for the one-disk problem).

8.5. Numerical Simulation of the Motions and Interaction of Two Balls
Sedimenting in an Incompressible Viscous Fluid

The fourth test problem considered here concerns the simulation of the motions anc
teraction of two sedimenting identical balls in a vertical cylinder with square cross-secti
The computational domain 2 = (0, 1) x (0, 1) x (0, 4). The diameted of the two balls
is1/6 and attime = 0, the centers of the two balls are located on the axis of the cylinder
{0.5, 0.5, 3.5} and{0.5, 0.5, 3.16}. The initial translational and angular velocities of the balls
are zero. The density of the fluidés = 1.0 and the density of the ballspg = 1.14. The vis-
cosity of the fluid iss = 0.01. The initial condition for the fluid flow ig(0) (=ug) = Owhile
the boundary condition ig(t) = 0 on the boundary of the cylindest > 0. The simulation

0.2 025

FIG. 8.15. Histories of the angular velocities of the disks (left) and of their distance (righf)sferl.5 and
v =102 (hg=1/256,At = 7.5 x 1074, solid lines;h, = 1/384,At =5 x 1074, dashed—dotted lines). Wave-like
equation treatment of the advection.
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FIG. 8.16. Ball positions att =0, 0.27075, and 0.314260s=1.14, p;=1, v=102, h,=1/80, At=
7.5x 1074).

has been done witthg, At} = {1/60, 103} and{1/80, 7.5 x 104}, andh, = 2hg, im-
plying that the corresponding velocity meshes (resp., pressure meshes) have, approxim
897,000 and A x 1P vertices (resp., 116,000 and 271,000 vertices). The advectior
diffusion step has been treated by the least squares/conjugate gradient method disct
in Refs. [37, 43], while the various elliptic problems involved in our methodology hav
been treated by fast elliptic solvers based on cyclic reduction. Concerning the collis
model, we have taken= 10~* andp = 1/60 as thickness of the safety zone. The sim-
ulation takes about 120 (resp., 304) s per time step on a DEC Alpha 500-au worksta
for {hg, At} = {1/60, 10°3} (resp.,{1/80, 7.5 x 10~4}). The maximum particle Reynolds
number during the entire evolution is 111.46 (resp., 117.28)Her At} = {1/60, 103}
(resp.,{1/80, 7.5 x 10~%}). In Figs. 8.16 and 8.17 we have visualized the positions of th
balls att = 0,0.27075, 0.31425, 0.45075, 0.53475, and 0.72975, obtainedhyitint} =
{1/80, 7.5 x 10~%}; onthese figures we clearly observe that the anticipated drafting, kissir
and tumbling phenomenon (Ref. [49]) is indeed taking place.

On the following Figs. 8.18 to 8.21 we have reported comparisons between quanti
computed with{hg, At} = {1/60, 10~} and{1/80, 7.5 x 10~4}; these figures show good
agreement considering, once again, that the kissing, drafting, and tumbling phenoment
a non-smooth one, involving several symmetry breakings.

8.6. Sedimentation of Two Disks in an Oldroyd-B Visco-elastic Fluid
8.6.1. Generalities and Synopsis

The test problem considered now is singular in the sense that it is the only one, in this ¢
cle, related to fluid/rigid solid interaction when the fluid is non-Newtonian. Since we inter
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FIG. 8.17. Ball positions att = 0.45075, 0.53475, and 0.72925,=1.14, p; =1, v =102, hg, = 1/80,
At=7.5x10%).

to publish, in the not too far future, an article specifically dedicated to the direct numeri
simulation of visco-elastic particulate flow, our “visit” to the non-Newtonian realm will be
rather brief; actually, our main intention is to show some fundamental differences betw:
the behavior of Newtonian and visco-elastic fluids when sedimentation is concerned.
consider thus the simulation of two rigid disks sedimenting in a two-dimensional cav
filled with anOldroyd-B visco-elastic fluidl he equations describing the rigid body motions
are as in Section 2; concerning the flow model we have to complete Equations (2.1)—(

0 04 0.2 03 04 05 06 o 0.1 0.2 03 04 05 06

FIG.8.18. Histories of thex-component of the ball centers (left) and of theomponent of the ball translation
velocity (right) forps = 1.14,p; = 1, andv = 1072 (hg, = 1/60, At = 1073, solid lineshg, = 1/80,At =7.5 x 1074,
dashed-dotted lines).



400 GLOWINSKI ET AL.

1 1 1 L I I Y ' h L ‘ H L
0 0.1 0.2 03 04 05 0.6 o 04 0.2 08 04 0.5 0.6

FIG.8.19. Histories of they-component of the ball centers (left) and of freomponent of the ball translation
velocity (right) forps = 1.14, 0 = 1, andv = 1072 (hg = 1/60,At = 1073, solid lineshg =1/80,At =7.5 x 1074,
dashed-dotted lines).

with (see [45, pp. 185-187])

\
T4+ T = 20 + 2 D(W)). (8.1)
where in (8.1):

e A d x d tensorA being given,x denotes the upper convected derivativeAof
defined by

A +U- VA — (VWA — A(VU); (8.2)

v
A ot

A1 is the relaxation time;

A2 is the retardation time;

n = (A1/12)vs, Whereu is the fluid viscosity,
D(u) = (Vu + Vul)/2.

FIG.8.20. Histories of thez-component of the ball centers (left) and of theomponent of the ball translation
velocity (right) forps = 1.14,p; = 1, andv = 1072 (hg = 1/60,At = 1073, solid linesh, = 1/80,At = 7.5 x 1074,
dashed-dotted lines).
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FIG. 8.21. History of the distance between the two balls fge=1.14, p; =1, andv =102 (hg =1/60,
At =103, solid lines;hg = 1/80, At =7.5 x 1074, dashed—-dotted lines).

Generalizing the splitting scheme (7.4)—(7.19) to accommodate the additional relation (
is not difficult; we can, in particular, use the wave-like equation approach discussec
Section 7.3 to treat the advection tefm/at + (u - V)t occurring in (8.1) (from (8.2))
and apply a time stepping method to the resulting problem (this approach was followe:
Ref. [39]).

Remark 8.1. Detailed discussions on the modeling and simulation oflthe of visco-
elastic liquidscan be found in Refs. [50, 51]; see also the many references therein.

8.6.2. Formulation of the Test Problem and Numerical Results

As already mentioned, this fifth test problem is concerned with the direct simulation
the sedimentation of two rigid disks in a two-dimensional cavity filled with an OldByd-
visco-elastic fluid. The computational domairtis= (0, 2) x (0, 6). The initial condition
for the fluid velocity field isu(0)(=up) = 0. The boundary condition for the velocity is
u(t) =0onT,Vvt > 0. The density of the fluid i = 1 and the viscosity i$; = 0.25.
The relaxation time is.; = 1.4, while the retardation time is, = 0.7. The diameter of
the disks isd = 0.25, while their density is = 1.01. The initial translation and angular
velocities of the disks are zeros. At tinhe= 0, the centers of the two disks are located
on the vertical symmetry axis of the cavity @t 5.25} and {1, 4.75}. In the simulation,
the mesh size for the velocity fielt, = 1/128; it ish, = 2hg = 1/64 for the pressure
andh, = hg = 1/128 for the stress tenset The time step is\t = 103, We let the two
disks fall in the cavity. Before touching the bottom, we can see in Fig. 8.22 the fundamet
features of a pair of identical disks sedimenting in an Oldroyd-B viscoelastic fluid, name
a drafting, kissing, and chaining phenomenon (see [52] for more details). The avera
terminal velocity is 0.29 in this simulation, implying that the corresponding

Deborah numbeis De = 1.624
Reynolds numbds Re= 0.29
Visco-elastic Mach numbés M = 0.686
Elasticity numbeis E = 5.6
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B viscoelastic fluic=e8

FIG. 8.22. Sedimentation and chaining of two disks in an Oldroyd-

22.5, and 27 (from left to right and from top to bottom).
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(see, e.g., Ref. [51] for a precise definition of D&, andE). The simulation has been done
using the wave-like equation approach, discussed in Section 7.3, to treat the adveation
andr.

8.7. Direct Numerical Simulation of Incompressible Viscous
Flow around Moving Airfoils

8.7.1. Motivation and Synopsis

The rigid bodies considered so far have been circular disks or spherical balls. Anot
salient feature of the previous test problems and simulations has been that the rotati
kinetic energy was always small compared to the translational kinetic energy. The m
goals of the following two test problems are:

(i) To show that the computational methods discussed in Sections 4 to 7 apply (at Ie
in 2-D) to rigid bodies of shape more complicated than disks and balls.

(i) To show that the above methods apply when the rotational kinetic energy is co
parable, or even larger, to the translational one and still can bring accurate results.

The following test problems concern flow around one or several NACA0012 airfoils.

8.7.2. Flow around a NACA0012 Airfoil with Fixed Center of Mass

We consider here an incompressible viscous flow around a NACA0012 airfoil that t
afixedcenter of mass and feee to rotatedue to hydrodynamical forces; the surrounding
region( is the rectangle<4, 16)x (—2, 2). The characteristic length, namely the airfoil
length, is 1.009 and the fixed center of mass of the airfoil is at (0.42, 0). Initial angul
velocity and incident angle are zero. The density of the fluig is- 1 and the density of
the airfoil is ps = 1.1. The viscosity of the fluid is; = 10~2. The initial condition for the
fluid flow is u(0)(=up) = 0 and the boundary datg is given by

(o if Xo=—2o0r2
go(X, t) = {(1 _ e—SOt)((l)) if X, =—4o0r16

fort > 0. Hence the Reynolds number is about 101 with respect to the length of the air
and the maximum inflow speed. For this test problem we have chosen twfhgetst}

of discretization parameters, nam¢ly/64, 1.5 x 103} and{1/96, 103}, to validate the
simulation results; the mesh size for pressure is, adgiss 2hg. We have thus, approxi-
mately, 330,00 and 740,000 velocity vertices for the triangulations used to approximate
velocity.

To enforce the rigid body motion inside the airfoil at each time step, using the multipli
space defined by (6.16), we have taken all the grid points from the velocity mesh contai
in the airfoil at that time completed by a selected set of points belonging to the boundan
the airfoil (and containing the trailing edge; see Fig. 8.23) and then used as scalar pro
over A(t) the one defined by (6.6).

For these rotating airfoil simulations, we have used the previously mentioned le
squares/conjugate gradient technique to solve the advection-diffusion subproblems.
NACAO0012 airfoil is fixed up tat = 1. A steady flow around it is obtained. Afte= 1,
we allow the NACAO0012 airfoil to rotate freely. In Fig. 8.24, we observe that the historie
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FIG. 8.23. Part of the velocity mesh and example of mesh points used in (6.16) to enforce the rigid bo
motion inside the NACAQ0012 airfoil.

corresponding to the two sethq, At} are in very good agreement. The airfoil intends
to keep its broadside perpendicular to the in-flow direction which is a stable position
non-circular particles settling in a channel at small Reynolds numbers (cf. Ref. [53]) an
quickly reaches a periodic motion.

The CPU/time step is 53 s (resp., 107 &, At} = {1/64, 1.5 x 1073} (resp.,{1/96,
10-3}) on one node of an IBM SP2. The same methodology has been (successfu
applied to the more challenging case wheye= 1.25 x 1073 (i.e., Re=807) the other
data and parameters staying the same. The corresponding results are discussed
Sect. 6].

Remark 8.2. For the test case discussed here the fact that we used a fine uniform m
may appear as adrawback. Actually, this test problem was considered for validation purpt
and also to show that our methodology can handle non-circular bodies. Also, when simu
ing the flow of mixtures with over 100 particles highly dispersed in the flow region (see tl
test problems in Sections 8.8 and 8.9), which is the main goal of the distributed Lagral
multiplier method discussed here, using a fine uniform mesh everywhere is not a drawb
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FIG. 8.24. Histories of the anglehg, = 1/64, At =1.5 x 1073, dotted line;hg = 1/96, At =103, dashed—
dotted line) and of the angular velocityif = 1/64, At = 1.5 x 1073, dashed linehg = 1/96, At =1073, solid
line). The measures are in rad and rad/s.

FIG. 8.25. Flow visualization at = 1.
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anymore (particularly for a flow where the ratolid volume/fluid volumis of the order of
one or more).

Of course—as in [54]—one can combine locally adapted mesh with boun